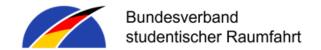


ODIN Executive Summary zur Wettbewerbsaufgabenstellung

Orbital launcher Design competItioN Bundesverband studentischer Raumfahrt

Kerninformationen für Vereinsvorstände

Stand: 21. Mai 2025



Inhaltsverzeichnis

. Zusammenfassung	3
1.1. Überblick	
1.1.1. Warum teilnehmen?	
1.2. Wettbewerbsziele	
1.2.1. Technologische Meilensteine	
1.2.2. Schlüsselinnovationen	
1.3. Für Vereinsvorstände	
Executive Summary der Aufgabenstellung	

Partner / Unterstützer

1. Zusammenfassung

1.1. Überblick

Ziel: Theoretischer Designwettbewerb mit Fokus auf Space-Shot Rakete

(Auslegung als subscale Demonstrator für zukünftigen Orbitalträger, ähnlich der SS-520)

Zeitraum: Einreichungen bis 30.05.2026

Preise: Gesamtvolumen / Preise werden im Frühjahr 2026 vorgestellt

Preiskürung für beste Einreichung (Hauptpreis) und jeweils für bestes Subsystem

Der Wettbewerb ermöglicht ein Spektrum an Teilnahmeformen. Zwischen:

Fokus-Teilnahme	Hauptpreis
Eine Hauptaufgabe bearbeiten	4+ Aufgaben bearbeiten
Circa 50 Seiten Designvorstellungen (ohne Appendix gezählt)	Bis 120 Seiten Designvorstellungen (ohne Appendix gezählt)
Ideal für Onboarding	Für erfahrene Teams

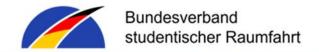
1.1.1. Warum teilnehmen?

- Präsentation von Vereins-Know-How vor Industrie-Sponsoren
- Bewerbung auf Ausschreibungen üben
- CubeSat-Spezialisten können eigene Nutzlastkonzepte einbringen (Aufgabe Payload)
- Neuen Mitgliedern durch fokussierte Aufgabenbearbeitung ein Onboarding mit Vermittlung des Vereins-Know-Hows ermöglichen

1.2. Wettbewerbsziele

1.2.1. Technologische Meilensteine

- 1. Space-Shot Demonstrator (100+ km, suborbitales Flugprofil)
- 2. Skalierbare Komponenten für MVL-Ziel (Minimal Viable orbital Launcher, 2-6 kg LEO)


1.2.2. Schlüsselinnovationen

Eigenschaft	Ermöglicht durch
✓ Modularität	6 Subsysteme (Hauptaufgaben des Wettbewerbs)
✓ Pragmatismus	"Build what you can"-Ansatz
✓ Synergien	Wissensaustausch im BVSR

1.3. Für Vereinsvorstände

Strategische Vorteile:

- Kein Zwang zur Vollteilnahme
- Eigene Stärken einbringen (z.B. nur Avionics u. Propulsion -> Abgabe Fokussieren)
- Kombination mit laufenden Projekten möglich
- Vergangene Verieinsprojekte als Know-How vorstellen

2. Executive Summary der Aufgabenstellung

Aufgabenübersicht

Der Wettbewerb umfasst 6 Hauptaufgaben (Propulsion, Aerostructure, Avionics, Recovery, GSE und Payload) zur Entwicklung skalierbarer Subsysteme und 3 Zusatzaufgaben (Kostenanalyse, Fertigung, Flugsimulation). Jede Hauptaufgabe erfordert Komponentendesigns für den Demonstrator sowie Skalierungsüberlegungen zum MVL. Der systemische Ansatz betont Modularität, Testbarkeit und Praxistauglichkeit mit Fokus auf studentischen Ressourcen.

Teilnahmemöglichkeiten

Mitgliedsvereine können Teams bilden und zwischen **Fokus-Teilnahme** (1–3 Aufgaben, ideal für Onboarding) und **Hauptpreis-Teilnahme** (4+ Aufgaben) wählen. Abgaben sind als strukturierte PDFs mit klarer Trennung von Kerninhalt und Appendix einzureichen. Auch nicht wettbewerbsrelevante Einreichungen zur Präsentation von Vereins-Know-How sind explizit erwünscht.

Bewertung

Grundlage ist der **Minimal-Viability-Ansatz**: Lösungen müssen machbar, testbar und skalierbar sein. Pro Aufgabe wird auf einer **ESA-Skala (0–100 Punkte)** bewertet, wobei Schwerpunkte wie Sicherheit (GSE), Redundanz (Avionics) oder Zero-Debris-Konformität (Payload) gelten. Die Gesamtbewertung kombiniert Hauptaufgaben und Zusatzaufgaben mit jeweiliger Gewichtung.

Dokumentationsvorgaben

Abgaben müssen als PDF (max. 120 Seiten Designvorstellungen, exclusive Appendix) strukturiert sein: Teilnahmeabsicht, Systemübersicht, Aufgabenbearbeitungen und Umsetzbarkeitsfazit. Der Appendix enthält Testprotokolle, Rohdaten und technische Details. Als Vorbild dient der "Technical Report" der European Rocketry Challenge. Beispiel: (https://github.com/SpaceTeam/uHoubolt).

Aufgaben/Subsysteme

Jede Hauptaufgabe hat spezifische Kriterien:

- Propulsion: Schubanalyse, Skalierbarkeit, Testprotokolle
- Avionics: Strahlungskonformität, Echtzeit-Datenauswertung
- Payload: Zero-Debris-Nachweis, wissenschaftlicher Nutzen

Zusatzaufgaben wie **Flugsimulation** verlangen realistische Modelle und Risikoanalysen. Vereine können sich auf ihre Stärken fokussieren – z.B. CubeSat-Teams auf Nutzlastdesigns.

Fazit

ODIN ermöglicht flexibles Engagement: Von Einzelaufgaben bis zum Gesamtsystem, von Theorie bis Praxis. Der Wettbewerb dient nicht nur der Technologiedemonstration, sondern auch der Vernetzung und Sichtbarkeit studentischer Projekte gegenüber Industrie und Forschung.

Kontakt: odin@bvsr.space | Einsendeschluss: 30.05.2026